VEER SURENDRA SAI UNIVERSITY OF TECHNOLOGY, BURLA DEPARTMENT OF METALLURGICAL AND MATERIALS ENGINEERING SESSION 2015 - 16 (Supplementary June ~ July 2016)

Total Pages-5

(Set-R₂)

B.Tech-6th Refractories and Furnaces

Full Marks: 70

Time: 3 hours

Q. No. 1 is compulsory and answer any five from the rest

The figures in the right-hand margin indicate marks

1. Answer all the questions:

- 2×10
- -(a) What is solid and liquid fuel?
- (b) What is refractory? Give the classification of refractories.
- (c) Explain the factors deciding the choice of refractory for a particular furnace.
- (d) What do you mean by flame? Explain it in detail.

(Turn Over

- (e) What do you mean by theoretical adiabatic and true flame temperature?
- (f) Draw the unary phase diagram of silica.
- (g) Define fuel efficiency. How does it vary with flue gas temperature?
- (h) What is SIALON? How is it produced?
- (i) Describe various modes of heat losses from a furnace.
- (j) What is a furnace? Write the difference between recuperator and regenerator.
- 2. (a) A coal has following proximate analysis on air dried basis, M = 1.5%, A = Ash = 15.5% VM = volatile matter = 28%, FC = Fixed Carbon = 55%. Calculate its ash% on dry basis and volatile matter on dry ash frees and dry mineral matter free basis.
 - (b) What do you mean by coal and coke? Explain LTC and HTC process of coke making and write advantage of HTC over LTC. 5

5

3.	(a)	Explain the characteristic properties of magnesite, magnesite-chrome and carbon bricks.	5
	(b)	Describe the composition, properties and area of application of high alumina refractory and chrome magnesite.	5
4.	(a)	What are the dolomite, silica and fireclay refractories? Describe its composition, properties and area of application.	5
	(b)	Mention the refractories used in different parts of iron blast furnace, coke oven and copper converter.	5
5.	(a)	Describe the refractories used in different parts of electric arc furnace, reheating furnace and muffle furnace.	5
	(b)	What do you mean by binary diagram? Draw the binary diagram of Al ₂ O ₃ - S ₂ O ₂ and explain it in detail.	5
6.	(a)	What do you mean by limit of inflammability? A gas mixture containing	
В.	Tech-6	th/Refractories and Furnaces (Set-R ₂) (Turn Ov	er)

35% H_2 , 55% CO, and 10% CH₄. The lower (L_1) and upper (L_2) limit of inflammability of the gases CO, H_2 and CH₄ in air are (13.5, 5) and (64, 65) and

(b) Draw the schematic diagram of cupola furnace and explain the working principle of the same. Write advantage and disadvantage of cupola furnace.

- 7. (a) Differentiate the terms furnace and oven. Classify the furnace on the basic of application and heating method.
 - (b) What do you mean by complete and incomplete combustion? Write the different stoichiometric equation by weight and by volume of C, CO, S and CH₄ for the complete combustion.
- 8. (a) What do you mean by pyrometric cone equivalent? Describe the pyrometric cone equivalent test.

5

5

(b) The flue gas from the industrial furnace have the following composition by volume:

 $CO_2 = 74\%$, CO = 0.2%, $H_2 = 0.09\%$, $O_2 = 6.81\%$ and $N_2 = 81.17\%$. Calculate the percentage excess air employed in the combustion, if loss of carbon in clinker and ash is 1% of the fuel used and the fuel has the following composition by weight:

$$C = 74\%$$
, $H_2 = 5\%$, $O_2 = 5\%$, $N_2 = 1\%$, $S = 1\%$, $H_2O = 9\%$, and $Ash = 5\%$.